FY-2001 DOE SNF PRECLOSURE SAFETY ANALYSIS

NSNFP STRATEGY MEETING

Richard Morissette YMP Integrated Safety Analysis June 27, 2001

FY-2001 ACTIVITIES

- Beyond Design Basis Events (BDBE) Consequence Evaluations
- Waste Acceptance Requirements Document (WASRD) Criteria Development
- Event Frequency Parametric Analyses
- Isotopic & Fuel Characteristics Studies
- Canister Design Basis Review
- Planning, Meetings, and Reporting

BDBE CONSEQUENCE EVALUATION

Objective

 Use more realistic assumptions and best-estimate inputs to perform beyond design basis event (BDBE) dose calculations for breached DOE SNF canisters

Status

Calculation (CAL-WPS-SE-000006 REV 00) approved/released

Spent Fuel Evaluated

- Non-Metal, Non-Intact Group
 - Shippingport Light Water Breeder Reactor (LWBR) Scrap
- Other, Non-Intact Group
 - N Reactor Spent Nuclear Fuel

BDBE CONSEQUENCE EVALUATION

BDBE Assumptions

- Drop of canister from overhead crane results in small (<10mm²)
 breach in the canister
- Canister leak path factor (LPF) = 0.1 for particulates
- LWBR scrap has no residual respirable particulates but some generated during BDBE from the fuel and crud
- MCO has 6 kg UO₂ particulate and 1.3 kg water after coldvacuum drying
- MCO has 12 kg of UH₃ and 16 kg of UO₂ at time of shipment
- MCO has no ignition of bulk U-metal after BDBE. Release fraction assumes slow oxidation of U-metal
- HEPA particulate filtration of 3.0E-04 except for cesium

BDBE CONSEQUENCE EVALUATION

Results

- Shippingport LWBR Scrap
 - w/o HEPA: TEDE=0.07 rem, CDE+DDE=0.6 rem
 - w/HEPA: TEDE=3E-4 rem, CDE+DDE=5E-4rem
- N Reactor SNF (<10mm² breach)
 - w/o HEPA: TEDE=0.01 rem, CDE+DDE=0.1 rem
 - w/HEPA: TEDE=6E-3 rem, CDE+DDE=7E-3rem
- N Reactor SNF (>10mm² breach)
 - w/o HEPA: TEDE=0.06 rem, CDE+DDE=0.9 rem
 - w/HEPA: TEDE=6E-3 rem, CDE+DDE=7E-3rem

WASRD CRITERIA DEVELOPMENT

Objective

- Provide a basis for limiting canister radionuclide releases in the event of an accidental breach
- Provide criteria that are not radionuclide specific
- Only waste form parameters needed to show compliance

Status

- Criteria basis calculation complete & ready for approval
- Sample calculation included in criteria basis calculation
- Canister Release Dose-Equivalent Source Term criteria (Rems/Canister) included in WASRD Rev 4H

WASRD CRITERIA DEVELOPMENT

Calculation Assumptions

- Canister release limits based on back-calculation from regulatory site boundary limits for Cat 2 DBEs (no safety factor)
- DSNF 18"/24" standard, MCO, HLW, HLW/PU, & Navy canisters and combinations thereof considered
- DBEs include handling of transportation casks, bare canisters, and unsealed disposal containers
- Maximum number of canisters involved in DBE can fail
- No credit for deposition, HEPA filtration, or canister leak path factor (LPF)
- Credit for transportation cask LPF=0.1

WASRD CRITERIA DEVELOPMENT

Canister Release Dose-Equivalent Source Terms

Canister Type	Canister Release Dose-Equivalent Source Term (rem/canister)				
, ,,,,,	Effective	Max Organ			
	(TEDE _{canister})	[(CDE + DDE) _{canister}]			
DSNF 18" dia. canister	1.15E+08	1.15E+09			
DSNF 24" dia. canister	1.38E+08	1.38E+09			
MCO	1.73E+08	1.73E+09			
HLW	1.15E+08	1.15E+09			
Pu Can-in-Canister	1.38E+08	1.38E+09			
Naval Spent Fuel Canister, MPC	6.92E+08	6.92E+09			

EVENT FREQUENCY PARAMETRIC ANALYSIS

Objective

 The purpose of this calculation is to evaluate an assumed range of performance allocation failure probabilities and the effect of these failure probabilities on the frequency of a radionuclide release.

Approach

- Bounding event (crane drop) is addressed in the calculation
- Parametric analysis on design basis failure probabilities for CTS components and DSNF, HLW, and HLW/PU canisters

Status

 Calculation checked, reviewed by NSNFP and Naval Reactors (NR), and in comment resolution

EVENT FREQUENCY PARAMETRIC ANALYSIS

Assumptions

- Components fail to meet their design basis at different failure probabilities ranging from 10⁻⁶ to 10⁻⁴
 - CTS Crane Yoke
 - CTS Transfer Gate
 - SNF or HLW Canisters
- Outcomes are taken from dose analyses assuming no HEPA
 - All DSNF and HLW/Pu canisters have doses resulting from a breach that exceed limits
 - Naval SNF canisters and HLW canisters have dose resulting from a breach that is within limits

EVENT FREQUENCY PARAMETRIC ANALYSIS

Canister type	Crane Failure		Number of	Drop	Item	Failure	Release Freq.	Outcome
HLW	1.40E-05	840	2	2.35E-02	Yoke	1.00E-05	2.35E-07	ML
HLW	1.40E-05	840	2	2.35E-02	Gate	1.00E-05	2.35E-07	ML
HLW	1.40E-05	840	2	2.35E-02	Canister FBDB	1.00E-05	2.35E-07	ML
HLW	1.40E-05	840	2	2.35E-02	Canister AODB	1.00E-05	2.35E-07	ML
Total							9.41E-07	ML
Pu/HLW & DSNF	1.40E-05	210	2	5.88E-03	Yoke	1.00E-05	5.88E-08	EDL
Pu/HLW & DSNF	1.40E-05	210	2	5.88E-03	Gate	1.00E-05	5.88E-08	EDL
Pu/HLW & DSNF	1.40E-05	210	2	5.88E-03	Canister FBDB	1.00E-05	5.88E-08	EDL
Pu/HLW & DSNF	1.40E-05	210	2	5.88E-03	Canister AODB	1.00E-05	5.88E-08	EDL
Total							2.35E-07	EDL
NAVY	1.40E-05	15	1	2.10E-04	Yoke	1.00E-05	2.10E-09	ML
NAVY	1.40E-05	15	1	2.10E-04	Gate	1.00E-05	2.10E-09	ML
NAVY	1.40E-05	15	1	2.10E-04	Canister FBDB	1.00E+00	2.10E-04	ML
NAVY	1.40E-05	15	1	2.10E-04	Canister AODB	1.00E+00	2.10E-04	ML
Total							4.20E-04	ML
TOTAL EDL							2.35E-07	EDL
TOTAL ML							4.21E-04	ML
TOTAL AR							4.21E-04	AR
FBDB = (flat botto	m design basis)	= The canis	ter design basi	s for a flat bo	ttom drop			
AODB (any orient	ation design bas	sis) = The ca	anister design b	asis for a dro	op in any orienta	tion		
ML (meets limits) :	= The sum of all	senarios tha	at meet DBE Ca	ategory 2 rele	ease limits,			
EDL (exceeds dos	se limits) = the s	um of all sce	enarios that med	et DBE Cated	ory 2 release lim	nits		
AR (any release)	_ MI , EDI							

ISOTOPIC & FUEL CHARACTERISTICS STUDIES

DOE SNF Source Term Development - NSNFP

- YMP representation at NSNFP/EM site weekly telecon
- Review of NSNFP template methodology uncertainties
 - Actinide concentrations do not vary linearly with burnup
 - Large uncertainties could occur if a burnup multiplier used in the source term estimate is much larger or much smaller than 1.
- Documented basis for selection of important radionuclides
- GOTH-SNF Analyses on metallic fuels
 - Identify cases and review results
- Status: Level of effort activity

CANISTER DESIGN BASIS REVIEW

Objective

- Review DOE SNF canister design and testing
- Develop a defensible basis for canister no-breach credit based on a suitable material strain criterion and get Nuclear Regulatory Commission (NRC) buy-in.

Strain Criterion Development Approach

- Joint effort between NSNFP and YMP using structural analysis and ASME code expertise
- Define failure based on material strain
- Establish design margin for defects and degradation
- Identify precedence for strain criteria
- Status: Level of effort activity

INPUTS REQUIRED FROM NSNFP FOR LA

Inputs to Qualified LA Products

- MCO Drop Capability for MGR CTS Design
- DOE SNF Canister Design Basis for Events Categorization
- DOE SNF Source Term for License Application Chapter 7
- Naval Reactor SNF Source Term for DBE Analyses

Inputs to Non-Q Products

- DOE SNF Source Term for BDBE Analyses
- GOTH SNF Results for BDBE Analyses
- DOE SNF Canister Beyond-Design-Basis Failure Modes

